奥数800字
题目:1、甲、乙、丙三个人各拿出9元钱合买一批练习本,由于乙比甲多拿了15本,丙和乙拿的同样多,因此乙、丙都要给甲1.5元,那么,三人合买了多少本练习本?
答题人感言:有困难!为什么不来个简单的呢?郁闷!
答题方法:由于乙比甲多拿了15本,丙和乙拿的同样多,可以知道总共有甲拿的3倍再加30本。平均每人有甲拿的本数+10本。这些直9元。甲拿的比每人平均拿的本数少10本,所以应该少出钱,他少出了1.5*2=3元。所以10本书直3元。每本0.3元。三人合买了3*9/0.3=90本。
答后感言:终于答上来了,有奖励吗?
题目:张、王、李、赵四个人比赛乒乓球,每两个人都要赛一场。结果张胜了赵,并且张、王、李三人胜的场数相同,则赵胜了多少场?
答题人感言:努力吧,争取攻克下!
答题方法:可以知道,每人要比3场,总共有6场比赛。也就是有6个胜利。张胜了赵,并且张、王、李三人胜的场数相同,说明张、王、李三人胜了1场,或者2场。先看3人胜利1场的情况,他们3人一起胜了3场,比赛共有6场胜,则赵要胜3场,但他没胜张,矛盾,不成立。看3人每人胜2场,总有共6场胜,则赵胜了0场。
答后感言:呵呵,我聪明吧!
题目:1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
答题人感言:我晕!
答题方法:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除 同样的道理,100~900 百位上的数字之和为4500 同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除; 同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005 从1000~1999千位上一共999个“1”的和是999,也能整除;
200020012002200320042005的各位数字之和是27,也刚好整除。 最后答案为余数为0。
答后感言:我要休息!妈妈:不行! 555555555555555555~~~~~~~~~~~~~
奥数字相关文章:
★ 学奥数200字
★ 奥数题600字
★ 奥数班300字
★ 奥数竞赛600字
★ 做奥数450字