数列通项公式的求法
更新时间:
1、对于一个数列{ an },如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn 。那么 , 通项公式为an=a1+(n-1)d,其求法很重要,利用了“叠加原理”的思想:将以上 n-1 个式子相加, 便会接连消去很多相关的项 ,最终等式左边余下an ,而右边则余下a1和 n-1 个d,如此便得到上述通项公式。
2、按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
数列通项公式的求法相关文章:
★ 函数定义域的求法
★ Sn的通项公式
数列通项公式的求法
1、对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。那么,通...
推荐度:
点击下载文档文档为doc格式