三角形重心2:1怎么证明
更新时间:
在三角形abc中,d为ab的中点,e为ac的中点,则就连接中线be,cd交于点o,那么三角形doe与三角形BOC,因为d和e分别为ab、ac的中点,所以说de等于二分之一BC且平行于BC,又因为三角形doe与三角形BOC相似,所以对应边的比例则为doe、boc也就是为1:2。三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。三角形重心有一个口诀,是:三条中线必相交,交点命名为重心;重心分割中线段,线段之比二和一。
三角形重心2:1怎么证明相关文章:
三角形重心2:1怎么证明
在三角形abc中,d为ab的中点,e为ac的中点,则就连接中线be,cd交于点o,那么三角形doe与三角形BOC,因为d和e分别为ab、ac的中点,所以说de等...
推荐度:
点击下载文档文档为doc格式