作文档>生活经验>教育

证明直角三角形斜边上的中线等于斜边的一半

更新时间:

  证法1:

  ΔABC是直角三角形,作AB的垂直平分线n交BC于D

  ∴ AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)

  以DB为半径,D为圆心画弧,与BC在D的另一侧交于C'

  ∴DC’=AD=BD∴∠BAD=∠ABD ∠C’AD=∠AC’D (等边对等角)

  又∵∠BAD+∠ABD+∠C’AD+∠AC’D =180°(三角形内角和定理)

  ∴∠BAD+∠C’AD=90° 即:∠BAC’=90°

  又∵∠BAC=90°

  ∴∠BAC=∠BAC’

  ∴C与C’重合(也可用垂直公理证明 :假使C与C’不重合 由于CA⊥AB,C’A⊥AB 故过A有CA、C’A两条直线与AB垂直 这就与垂直公理矛盾 ∴假设不成立 ∴C与C’重合)

  ∴DC=AD=BD∴AD是BC上的中线且AD=BC/2这就是直角三角形斜边上的中线定理。

  证法2:

  ΔABC是直角三角形,AD是BC上的中线,作AB的中点E,连接DE

  ∴BD=CB/2,DE是ΔABC的中位线

  ∴DE‖AC(三角形的中位线平行于第三边)

  ∴∠DEB=∠CAB=90°(两直线平行,同位角相等)

  ∴DE⊥AB

  ∴E是AB的垂直平分线

  ∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)

  ∴AD=CB/2


证明直角三角形斜边上的中线等于斜边的一半相关文章:

表演舞台上会喷白烟的机器叫什么

历史上魏延是怎么死的

山坡上雪化得快的是哪个方向

微信上如何能看到自己的密码

如何洗掉衣服上的墨水纯蓝的

物体放在赤道上的支持力等于重力

证明直角三角形全等的条件

如何把合适的人放到合适的岗位上

贺兰山山顶上有终年不化的雪吗

直角三角形斜边上的高怎么算

证明直角三角形斜边上的中线等于斜边的一半

证法1:ΔABC是直角三角形,作AB的垂直平分线n交BC于D∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)以DB为半径,D为圆心画弧,与BC在D...
推荐度:
点击下载文档文档为doc格式

精选图文