求矩阵特征值的方法
更新时间:
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。
矩阵特征值:设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值(characteristicvalue)或本征值(eigenvalue)。
性质:
n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根)。
若λ是可逆阵A的`一个特征根,x为对应的特征向量,则1/λ是A的逆的一个特征根,x仍为对应的特征向量。
若λ是方阵A的一个特征根,x为对应的特征向量,则λ的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量(i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
求矩阵特征值的方法相关文章:
★ 求跑步锻炼的方法
★ 怎样求矩阵的秩
求矩阵特征值的方法
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。矩阵特征值:设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称...
推荐度:
点击下载文档文档为doc格式
上一篇:烈烈清风朗诵原文
下一篇:历史上孙权的一个称号