特征根法求数列通项原理
更新时间:
特征根法求数列通项原理是数列{a(n)},设递推公式为a(n+2)=p*a(n+1)+q*a(n),则其特征方程为x^2-px-q=0。若方程有两相异根A、B,则a(n)=c*A^n+d*B^n,若方程有两等根A=B,则a(n)=(c+nd)*A^n。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。
特征根法求数列通项原理相关文章:
特征根法求数列通项原理
特征根法求数列通项原理是数列{a(n)},设递推公式为a(n+2)=p*a(n+1)+q*a(n),则其特征方程为x^2-px-q=0。若方程有两相异根A、B,...
推荐度:
点击下载文档文档为doc格式
上一篇:失意的诗句
下一篇:中国香菇之乡到底有几个