作文档>生活经验>其他

无偏估计怎么求

更新时间:

如果ξ~P(λ),那么E(ξ)= D(ξ)= λ,其中P(λ)表示泊松分布,无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ ,则称ξ∧是ξ的无偏估计量。首先,因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,独立同分布,所以它们的期望和方差都是λ ,则(1)无偏性E(λ1∧)= E(ξ1)= λ,E(λ2∧)=E[(ξ1+ξ2)/2]= (λ+λ)/2 = λ,E(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+2λ)/3 = λ,E(λ4∧)= E[(ξ1+ξ2+ξ3)/3]= (λ+λ+λ)/3 = λ ,(2)有效性,即最小方差性,D(λ1∧)= D(ξ1)= λ,D(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4= (λ+λ)/4 = λ/2,D(λ3∧)= D[(ξ1+2*ξ2)/3]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/9 = 5λ/9,D(λ4∧)= D[(ξ1+ξ2+ξ3)/3]= [D(ξ1+ξ2+ξ3)]/9 =(λ+λ+λ)/9 = λ/3,其中 D(λ4∧)= λ/3 最小,所以无偏估计量 λ4∧最有效。


无偏估计怎么求相关文章:

圆锥的表面积和体积怎么求

平均冲力怎么求

sinx/x的定积分怎么求

知道圆心角怎么求弧长

知道面积怎么求直径

长方体的体积怎么求长

密度公式体积怎么求

三棱锥的体积怎么求

坐标向量的投影怎么求

比热容怎么求

无偏估计怎么求

如果ξ~P(λ),那么E(ξ)=D(ξ)=λ,其中P(λ)表示泊松分布,无偏估计量的定义是:设(&x...
推荐度:
点击下载文档文档为doc格式

精选图文