集合区间表示方法
更新时间:
区间的表示方法有:(a,b)(b>a),(开区间);(a,b](b>a),(半开半闭区间);[a,b)(b>a),(半开半闭区间);[a,b](b>a),(闭区间)。
在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0≤x≤1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
集合区间表示方法相关文章:
★ 化合价的表示方法
★ 溶解度的表示方法
★ 时间表示方法介绍
集合区间表示方法
区间的表示方法有:(a,b)(b>a),(开区间);(a,b](b>a),(半开半闭区间);[a,b)(b>a),(半开半闭区间);[a,b](b>a),(闭区...
推荐度:
点击下载文档文档为doc格式
上一篇:工作中别人不配合怎么办...
下一篇:哪些零食不能吃