2022年毕业实习报告模板
2022年毕业实习报告模板(精选16篇)
2022年毕业实习报告模板 篇1一、 实习任务
利用自己所熟悉的一种编程语言,实现单像空间后方交会,解求此张像片的6个外方位元素 , , , ,ω,κ ,
二、 实习目的
1、 深刻理解单张像片空间后方交会的原理与意义;
2、 在存在多余观测值时,利用最小二乘平差方法,经过迭代,求的外方位元素的最佳值;
3、 熟悉VC编程方法,利用编程实现计算。
三、 实习原理
以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,求解该影象在航空摄影时刻的像片外方位元素 , , , ,ω,κ共线条件方程如下:
x-x0=-f*[a1(X-Xs)+b1(Y-Ys)+c1(Z-Zs)]/[a3(X-Xs)+b3(Y-Ys)+c3(Z-Zs)]
y-y0=-f*[a2(X-Xs)+b2(Y-Ys)+c2(Z-Zs)]/[a3(X-Xs)+b3(Y-Ys)+c3(Z-Zs)]
其中:
x,y为像点的像平面坐标; x0,y0,f为影像的外方位元素;
, ,为摄站点的物方空间坐标;X,Y,Z为物方点的物方空间坐标;
旋转矩阵R为 ;
由于此共线条件方程是非线性方程,先对其进行线性化,利用泰勒展开得:
=(x)-x++++++++
=(y)-y++++++++
像点观测值一般视为等权,即P=I;
矩阵形式:V=AX-L,P=I;
通过间接平差,为提高精度,增加多余观测方程,根据最小二乘平差原理,可计算出外方位元素的改正数。经过迭代计算,每次迭代用未知数的近似值与上次迭代计算的改正数之和作为新的近似值,重复计算,求出新的改正数,这样反复趋近,直到改正数小于某个限值为止。
四、 程序框图
输入原始数据
归算像点坐标x,y
计算并确定初值 , , , ,
组成旋转矩阵R
计算(x)(y)和
逐点组成误差方程式并法化
所有点完否?
解法方程,求未知数改正数
计算改正后的外方位元素
未知数改正数
2022年毕业实习报告模板相关文章:
2022年毕业实习报告模板
上一篇:英文口语演讲稿三分钟演讲